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Relaxor ferroelectrics were discovered almost 50 years ago among the complex oxides with
perovskite structure. In recent years this field of research has experienced a revival of interest.
In this paper we review the progress achieved. We consider the crystal structure including
quenched compositional disorder and polar nanoregions (PNR), the phase transitions including
compositional order-disorder transition, transition to nonergodic (probably spherical cluster
glass) state and to ferroelectric phase. We discuss the lattice dynamics and the peculiar
(especially dielectric) relaxation in relaxors. Modern theoretical models for the mechanisms of
PNR formation and freezing into nonergodic glassy state are also presented.
C© 2006 Springer Science + Business Media, Inc.

1. Introduction
Relaxor ferroelectrics or relaxors are a class of disordered
crystals possessing peculiar structure and properties. At
high temperature they exist in a non-polar paraelectric
(PE) phase, which is similar in many respects to the PE
phase of normal ferroelectrics. Upon cooling they trans-
form into the ergodic relaxor (ER) state in which polar
regions of nanometer scale with randomly distributed di-
rections of dipole moments appear. This transformation
which occurs at the so-called Burns temperature (TB) can-
not be considered a structural phase transition because it
is not accompanied by any change of crystal structure
on the macroscopic or mesoscopic scale. Nevertheless,
the polar nanoregions (PNRs) affect the behaviour of the
crystal dramatically, giving rise to unique physical prop-
erties. For this reason the state of crystal at T < TB is often
considered as the new phase different from the PE one.

At temperatures close to TB the PNRs are mobile and
their behaviour is ergodic. On cooling, their dynamics
slows down enormously and at a low enough tempera-
ture, Tf (typically hundreds degrees below TB), the PNRs
in the canonical relaxors become frozen into a nonergodic
state, while the average symmetry of the crystal still re-
mains cubic. Similar kind of nonergodicity is character-
istic of a dipole glass (or spin glass) phase. The existence
in relaxors of an equilibrium phase transition into a low-
temperature glassy phase is one of the most interesting
hypotheses which has been intensively discussed. Freez-
ing of the dipole dynamics is associated with a large and

wide peak in the temperature dependence of the dielectric
constant (ε) with characteristic dispersion observed at all
frequencies practically available for dielectric measure-
ments (Fig. 1). This peak is of the same order of magnitude
as the peaks at the Curie point in the ordinary ferroelectric
(FE) perovskites, but in contrast to ordinary ferroelectrics
it is highly diffuse and its temperature Tm (>Tf) shifts with
frequency due to the dielectric dispersion. Because of the
diffuseness of the dielectric anomaly and the anomalies
in the temperature dependences of some other properties,
relaxors are often called (especially in early literature) the
“ferroelectrics with diffuse phase transition,” even though
no transition into FE phase really occurs.

The nonergodic relaxor (NR) state existing below Tf

can be irreversibly transformed into a FE state by a strong
enough external electric field. This is an important charac-
teristic of relaxors which distinguishes them from typical
dipole glasses. Upon heating the FE phase transforms to
the ER one at the temperature TC which is very close to
Tf . In many relaxors the spontaneous (i.e. without the ap-
plication of an electric field) phase transition from the ER
into a low-temperature FE phase still occurs at TC and
thus the NR state does not exist.

Compositional disorder, i.e. the disorder in the ar-
rangement of different ions on the crystallographically
equivalent sites, is the common feature of relaxors. The
relaxor behaviour was first observed in the perovskites
with disorder of non-isovalent ions, including the
stoichiometric complex perovskite compounds, e.g.
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Figure 1 Temperature dependences of the real and imaginary parts of
the relative dielectric permittivity measured at different frequencies in a
crystal of the prototypical relaxor Pb(Mg1/3Nb2/3)O3. Enlarged view in the
insert shows the universal relaxor dispersion (URD) (after Bokov and Ye,
unpublished).

Pb(Mg1/3Nb2/3)O3 (PMN) [1] or Pb(Sc1/2Ta1/2)O3

(PST) [2] (in which Mg2+, Sc3+, Ta5+ and Nb5+ ions
are fully or partially disordered in the B-sublattice of
the perovskite ABO3 structure) and nonstoichiometric
solid solutions, e.g. Pb1−xLax(Zr1−yTiy)1−x/4O3 (PLZT)
[3, 4] where the substitution of La3+ for Pb2+ ions
necessarily leads to vacancies on the A-sites. Recently
an increasing amount of data reported has shown that
many homovalent solid solutions, e.g. Ba(Ti1−xZrx)O3

(BTZ) [5, 6] and Ba(Ti1−xSnx)O3 [7] can also exhibit
relaxor behaviour. Other examples of relaxor ferro-
electrics are complex perovskites Pb(Zn1/3Nb2/3)O3

(PZN) Pb(Mg1/3Ta2/3)O3 (PMT), Pb(Sc1/2Nb1/2)O3

(PSN), Pb(In1/2Nb1/2)O3 (PIN), Pb(Fe1/2Nb1/2)O3

(PFN), Pb(Fe2/3W1/3)O3 (PFW) and the solid solutions:
(1−x)Pb(Mg1/3Nb2/3)O3−xPbTiO3 (PMN-PT) and
(1−x)Pb(Zn1/3Nb2/3)O3−xPbTiO3 (PZN-PT).

Although relaxor ferroelectrics were first reported
nearly half a century ago, this field of research has experi-
enced a revival of interest in recent years. In this paper, we
try to provide an overview of the current understanding
of the various issues of relaxors. Emphasis is put on the
latest developments. For a review of the earlier studies,
readers can refer to Refs. [8–11].

2. Compositional order-disorder phase
transitions and quenched disorder in
complex perovskites

As mentioned above, the disordered distribution of differ-
ent ions on the equivalent lattice sites (i.e. compositional

disorder, also called chemical, ionic or substitutional dis-
order) is the essential structural characteristic of relax-
ors. The ground state of the complex perovskites should
be compositionally ordered, e.g. in the A(B′

1/2B′′
1/2)O3

compounds each type of the cations, B′ or B′′, should
be located in its own sublattice, creating a superstructure
with complete translational symmetry. This is because
the electrostatic and elastic energies of the structure are
minimized in the ordered state due to the difference in
both the charge and the size of B′ and B′′ ions. Ther-
mal motion is capable of destroying the order at a certain
nonzero temperature (Tt). This occurs in the form of struc-
tural phase transition, the order parameter (compositional
long-range order, s) of which can be measured by the
X-ray or other diffraction methods. Such kind of phase
transitions had been known long ago (e.g. in many metal-
lic alloys) and was also discovered comparatively recently
at Tt ∼1500 K in PST, PSN [12] and several other complex
perovskites. Ordering implies the site exchange between
B′ and B′′ cations via diffusion. It is a relaxation process
with a nearly infinite characteristic time at low tempera-
tures, but at 1500 K it can be quite fast. As a result, in
some perovskites (e.g. in PST, PSN, PIN), by annealing
at temperatures around Tt and subsequent quenching, one
can obtain the metastable states with different s at low
temperatures. In some other materials (e.g. in PFN and
PMN) the compositional disorder cannot be changed by
any heat treatment because the relaxation time of order-
ing is too long. However in all known relaxors, at TB and
below, the compositional order is frozen (quenched), i.e.
cannot vary during practically reasonable time.

In the real complex perovskite crystals and ceramics
the quenched compositional disorder is often inhomoge-
neous, e.g. small regions of the ordered state are embedded
in a disordered matrix. These regions can be regarded as a
result of incomplete compositional order-disorder phase
transformation or as quenched phase fluctuations. In the
prototypical relaxor PMN this kind of inhomogeneous
structure always exists and cannot be changed by any
heat treatment.

In Pb(B′
1/2B′′

1/2)O3 perovskites the ordering of
B-site ions converts the disordered PE Pm3̄m structure
into the ordered Fm3̄m structure in which B′ ions
alternate with B′′ ions along the 〈100〉 directions (1:1
ordering). In the ordered phase of many non-ferroelectric
A(B2+

1/3B5+
2/3)O3 perovskites, B2+ ions alternate

with two B5+ ions along the 〈100〉 directions (1:2
ordering). The type of ordering in lead-containing relaxor
perovskites, Pb(B2+

1/3B5+
2/3)O3, has been the subject of

debates. In the early works only inhomogeneous ordering
(ordered regions within disordered surroundings) was
found in the samples studied. High-resolution electron
microscopy of PMN revealed nano-size (∼2–5 nm)
regions in which the ordering of 1:1 type (Fm3̄m)
was observed (see e.g. Refs. [13, 14]). These chemical
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nanoregions (CNR) give rise to weak superlattice
reflections (the so-called F-spots). The results of anoma-
lous X-ray scattering measurements [15] showed that
the CNRs in PMN exhibit an isotropic shape and a
temperature-independent (as expected for the quenched
order) size in the temperature interval of 15–800 K.
Alternating Mg2+ and Nb5+ ions, i.e the same type of
ordering as in the ordered Pb(B′

1/2B′′
1/2)O3 perovskites,

were initially supposed to exist in these regions. This
structural model was called “space charge model”
because it implies the existence of the negatively charged
compositionally ordered non-stoichiometric nanoregions,
and the positively charged disordered non-stoichiometric
matrix. Later, by means of appropriate high temperature
treatments, Davies and Akbas [16] were able to increase
the size of CNRs and obtained highly 1:1 ordered samples
without the disordered matrix in the PMT and modified
PMN ceramics. The existence of such ordering in overall
stoichiometric samples is obviously inconsistent with
the space charge model. The results of X-ray energy
dispersive spectroscopy with a nanometer probing size
revealed that the Mg/Nb ratio is the same in the CNRs as
in the disordered regions of PMN [17], which also dis-
agrees with the space charge model. A charge-balanced
“random-site” model has been suggested in which one
of the B-sublattices is occupied exclusively by B5+ ions
while the other one contains a random distribution of B2+
and B5+ ions in a 2:1 ratio so that the local stoichiometry
is preserved [16]. The inhomogeneous compositional
disorder, characteristic of the Pb(B2+

1/3B5+
2/3)O3

perovskites, are shown schematically in Fig. 2.
The degree of compositional disorder can greatly in-

fluence the FE properties. For example, the disordered
PIN crystals are relaxor ferroelectrics, but in the ordered
state, they are antiferroelectrics with a sharp phase transi-
tion [18, 19], confirming the general rule that the relaxor

[010]

[100] = B5+ = B2+

Figure 2 Schematic representation of the ordered chemical nanoregion,
CNR (the area delimited by the solid line) within the disordered matrix in
Pb(B2+

1/3B5+
2/3)O3 perovskites according to the random-site model. One

of the two sublattices inside CNR (shown by dashed lines) is formed by
B5+ ions only. Pb and O ions are not shown.

behaviour can only be observed in disordered crystals.
The possibility for real perovskite samples to have differ-
ent states of compositional disorder, depending on crystal
growth or ceramic sintering conditions, should be taken
into account in research work. More detailed discussion
on the compositional ordering and its impact on FE prop-
erties can be found in Refs. [20–22], and the literature
therein.

3. Relaxors in the ergodic state
3.1. Paraelectric structure
The PE phase of all perovskite ferroelectrics has the cubic
m3̄m average symmetry, but locally the ion configuration
can be distorted, i.e. the ions are not located in the special
crystallographic sites of the ideal perovskite structure.
For example, in the classical ferroelectrics BaTiO3, the
random displacements of Ti cations along the 〈111〉 di-
rections caused by the multiple-well structure of potential
surface were found [23, 24]. Such kind of displacements
is due to the hybridization between electronic states of
cations and the 2p states of oxygen (and should not exist
in the case of purely ionic bonds). This effect is an impor-
tant factor in the FE instability [25] and is also expected to
occur in perovskite relaxors. Moreover, owing to the dif-
ferent sizes of the compositionally disordered cations and
the random electric fields created because of the different
charges of these cations in relaxors, all ions are expected
to be displaced from special positions. These shifts should
exist in the PE phase and also at lower temperatures.

Permanent uncorrelated displacements of ions from
the high-symmetry positions of the (fully or partially
compositionally disordered) cubic perovskite-type struc-
ture were indeed found in relaxors at temperatures much
higher, as well as lower, than TB. They are shown schemat-
ically in Fig. 3. The displacements of Pb2+ were detected
by X-ray and neutron diffraction in PMN [26–28], PZN,
PSN, PST, PIN, PFN, PZN-PT and PMN-PT with small
x (see Refs. [29–31], and references therein). To describe
the Pb distribution, a spherical layer model has been pro-
posed [28] according to which the shifts of ions are ran-
dom both in length and direction so that they are dis-
tributed isotropically within the spherical layer centred
on the special Pb site.1 The typical radius of the sphere is
∼0.3 A

◦
. It decreases slightly with increasing temperature.

The off-symmetry displacements of Pb ions in PMN were
found to vanish at T > 925 K [26] (for other relaxors no
data up to so high temperatures are available). The spher-
ical layer model for Pb displacements in PMN was con-
firmed by the NMR investigations [32] and by the pulsed
neutron atomic pair-distribution function (PDF) analy-
sis [33]. Note that the significant random off-centring of
Pb ions in perovskites is not the result of compositional

1For PZN the shifts of Pb from the ideal positions along the eight equivalent
〈111〉 directions were reported, instead of spherical layer distribution [29].

33



FRONTIERS OF FERROELECTRICITY

= Pb = O = B5+

P

Figure 3 Typical uncorrelated ion displacements (shown by small arrows)
in the unit cell of the lead-containing complex perovskite relaxor. Thick
arrows show the direction of the local spontaneous polarisation P caused by
the correlated displacements of ions inside PNRs.

disorder. It was also found in the PE phase of the ordi-
nary perovskite PbZrO3 [34]. On the other hand, in the
PMN-PT solid solution with x = 0.4 which is still com-
positionally disordered, the Pb displacements from the
special perovskite positions were not observed at T > TC

[31].
According to neutron diffraction data [27, 29, 35] the

shifts of oxygen ions in the planes parallel to the corre-
sponding faces of the perovskite cubic cell are isotropic
(in PMN the shifts are close to 0.2 A

◦
). The oxygen ions are

also shifted (by about 0.06 A
◦

in PMN) in the perpendic-
ular direction so that the distribution of shifts forms two
rings parallel to the face of the cube. The displacements
of B-site ions (Nb5+, Mg2+, Zn2+ etc.) from the ideal
positions were not noticed in diffraction experiments [29,
35] (some authors found small seemingly isotropic dis-
placements of about 0.1 A

◦
in PMN [27]). Nevertheless

the investigations of the extended X-ray absorption fine
structure (EXAFS) and the pre-edge regions of absorption
spectra revealed the off-centre random displacements of
Nb in the direction close to 〈110〉 in PMN, PZN, PSN
and PIN [36]. These displacements are not sensitive to
the change of temperature (in the range of 290–570 K),
nor to the degree of compositional disorder (in PSN and
PIN). The pulsed neutron PDF studies confirm [33] that
the Nb displacements (in PMN at room temperature) are
comparatively small (much smaller than in KNbO3).

In the canonical relaxors such as PMN, the average
crystal symmetry seems to remain cubic with decreas-
ing temperature (see, however, the discussion in Sections
7.1.1 and 7.2), but the local structure changes. In addition

to the uncorrelated local distortions described above, the
clusters of FE order (i.e. PNRs) appear at T < TB (TB

≈ 620 K in PMN). Due to their extremely small (nano-
metric) size, these clusters cannot be detected from the
profiles of the X-ray and neutron Bragg diffraction peaks.
Other experiments are needed to validate their existence.

3.2. Experimental evidence for PNRs
The first experimental (although indirect) evidence for the
PNRs came from the temperature dependences of the op-
tic index of refraction (n) which appear to be linear at T >

TB, as shown in Fig. 4 [37]. At lower temperatures a de-
viation from linearity was observed which was attributed
to the variation of n induced (via quadratic electrooptic
effect) by local spontaneous polarization inside the PNRs.
The existence of PNRs was later confirmed by elastic dif-
fuse neutron and X-ray scattering around the reciprocal
lattice points [38–41]. In the PMN crystals, significant
diffuse scattering appears at T < TB with the intensity
increasing with decreasing temperature. This effect re-
sembles the scattering caused by FE critical fluctuations,
but an important difference (found in synchrotron X-ray
experiments [41]) is that the shape of wavevector depen-
dence of scattering intensity at large distances from the
reciprocal lattice point deviates from the Lorentzian. This
means [41] that the PNRs are more compact than the
usual FE critical fluctuations and have better defined bor-
ders. The correlation length (ξ ) of the atomic displace-
ments contributing to the diffuse scattering, which is a
measure of the size of PNR, can be derived from the ex-
periment: it is inversely proportional to the width of the

TTB

n

0
∆n

V

1/ε

Tf

Figure 4 Schematical typical temperature dependences of the refractive
index, n, unit cell volume, V, reciprocal dielectric permittivity, 1/ε, and
birefringence, �n, in the canonical relaxor.
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diffuse (Lorentzian) peak. According to the recent high-
resolution neutron elastic diffuse scattering study of PMN
[42], the size of the emerging PNRs is very small (ξ is
around 1.5 nm) and practically temperature independent
at high temperatures (Fig. 5). The perovskite unit cell pa-
rameter being ∼0.4 nm, each PNR is composed of only
a few unit cells. Below about 300 K, ξ begins to grow
on cooling, reaching ∼7 nm at 10 K. The most signif-
icant growth is found around Tf . Qualitatively the same
behaviour was observed in the bulk of PZN crystals (the
structure of PZN surface layers is different, see Section
7.2) but the size of PNRs is larger: they grow from ∼7 nm
at high temperatures to ∼18 nm at 300 K [43, 44]. From
the analysis of the relation between ξ and the integrated
intensity of scattering, it was concluded [42] that the num-
ber of PNRs also increases on cooling, but in contrast to
the temperature evolution of ξ , the increase begins right
from TB and at T ≈ Tf a sharp decrease of this number
occurs (presumably due to the merging of smaller PNRs
into larger ones). Below Tf the number of PNRs remains
practically the same at any temperature.

Emergence of PNRs below TB was also observed in
the PMN crystal by means of transmission electron mi-
croscopy (TEM) [14], but their size was an order of mag-
nitude larger than that determined from the neutron diffuse
scattering, probably because of the influence of electron
beam irradiation.

The directions of ionic displacements responsible for
the spontaneous dipole moment of PNRs were investi-
gated in several works. By means of dynamic structural
analysis of diffuse neutron scattering in PMN crystals it
was found that the B-site cations (Nb and Mg) and the
O anions are displaced with respect to the Pb cations
in the opposite directions along the body diagonal (i.e.
the [111] direction) of the perovskite unit cell, forming
a rhombohedral polar structure [45]. The rhombohedral
R3m symmetry was also derived from the analysis of

Figure 5 Average size of PNRs in the Pb(Mg1/3Nb2/3)O3 crystal (deter-
mined from diffuse neutron scattering) as a function of temperature. Vertical
dashed line corresponds to Tf . (after Xu et al. [42]).

ion-pair displacement correlations obtained by an X-ray
diffuse scattering technique [46], but according to this
study, O displacements deviate from the body diagonal
and remain parallel to the 〈110〉 direction. The shape of
PNR was found to be ellipsoidal [46]. The same shape
was revealed by TEM [14].

Besides the structural features, many properties of re-
laxors can be adequately explained on the basis of the
idea of PNRs. For example, in contrast to ordinary ferro-
electrics, where a sharp anomaly of specific heat is known
to appear at phase transition, in relaxors such anomaly is
smeared over a wide temperature range and thus is hardly
distinguishable from the background of the lattice contri-
bution. The excess specific heat (total minus lattice con-
tribution) has been determined in PMN and PMT crystals
using precise adiabatic and thermal relaxation techniques
[47]. It appears as a diffuse symmetric maximum located
within the same temperature interval where PNRs nucle-
ate and grow (between 150 and 500 K in PMN). Therefore
the anomaly is likely to be caused by the formation of
PNRs and/or by dipolar interactions among them.

Brillouin spectra of PMN-PT at T � TC revealed signif-
icant relaxation mode (central peak) which was attributed
to the thermally activated fast (10–100 GHz) relaxation
of PNRs [48]. The intensity and the width of the peak in-
crease with decreasing temperature, indicating an increase
of the number of PNRs and a slowing-down of their dy-
namics, respectively. The hypersonic damping was also
observed. It increases upon cooling, and is attributed to
the scattering of acoustic mode by PNRs [48].

PNRs can be thought as unusually large dipoles whose
direction and/or magnitude are dependent on an exter-
nal electric field. Therefore the related properties are
expected to be unusual. Indeed, at those temperatures
where PNRs exist, relaxors are characterized by giant
electrostriction [49–51], remarkable electrooptic effect
[50] and extremely large dielectric constant (see Fig. 1
and Section 6).

Even though no unambiguous structural confirmations
for the phase transition at TB are known, the anoma-
lies of properties at this temperature were reported. The
frequency-independent maximum of the dielectric loss
tangent was found at this temperature in PMN [52]. In the
course of thermal cycling of PMN and PMN-PT crystals
unannealed after growth, a narrow maximum of the acous-
tic emission activity is observed (and decreases with the
increase of number of cycles) in the vicinity of TB [53].
Not only the temperature dependence of the index of re-
fraction deviates from linearity at T < TB (as discussed
above in this section), but the temperature dependences
of the reciprocal dielectric constant, lattice parameter [51]
(see Fig. 4 and (consequently) thermal strain [10, 53] also
do the same.

Little is known about the relation between the CNRs
and the PNRs in relaxors, although such relation can a
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priori be expected. Based on the TEM data, it was con-
cluded that the PNRs in PMN may contain CNRs inside
and in this case the regions in which PNRs and CNRs
overlap remain non-polar [14]. In the framework of the
theoretical models discussed in Sections 5 and 7.3, the
CNRs can be considered as one of the factors influencing
the formation and behaviour of PNRs, but not necessarily
the determining factor.

4. Lattice dynamics in relaxors
Phase transitions in displacive ferroelectrics (including
perovskites) are known to be caused by softening and
condensation of transverse optic (TO) phonon mode at the
Brillouin zone centre. Since the frequency of this mode
(ω0) is connected to the static lattice dielectric constant
(through the Lyddane-Sachs-Teller relation, 1/ε ∝ ω0

2),
the divergence of ε in ferroelectrics at TCW according
to the Curie-Weiss law (1/ε ∝ T − TCW ) implies that
the mode condenses (its frequency tends to zero) at TCW,
too. In relaxors, the Curie-Weiss law also holds in the PE
phase, i.e. at T > TB, (see Fig. 4 and Section 6), but the
corresponding softening of phonon modes had not been
detected until recently. During the last few years neutron
inelastic scattering technique was applied to investigate
the lattice dynamics in relaxor crystals. In the PE phase
of PMN far above TB, the dispersion of the transverse
acoustic (TA) and low-energy TO phonons were found to
be very similar to that existing in the PE phase of classical
displacive ferroelectrics PbTiO3 [39, 54] (see the curves
for 1100 K in Fig. 6). On cooling down to T ≈ TB, the
optic branch softens in the same manner as in displacive
ferroelectrics, i.e., the frequency of the mode at wave
vector 
q = 0 (zone centre mode) follows the Cochran law
[54, 55]:

ω2
0 = A(T − T0), (1)

with A > 0, as shown in Fig. 7. At T < Tf , the well-
defined TO modes are also observed [55] (see the curve
for 150 K in Fig. 6). Once again, the temperature evolu-
tion is consistent with the typical behaviour of a FE soft
mode below the Curie temperature (Fig. 7), i.e. Equation 1
holds with A < 0 (note that T0 is close to TB in this case).
The same dependence is observed at low temperatures in
PZN crystal [44]. But in the temperature range between
Tf and TB, the lattice dynamics is different. The prop-
agating TO modes are observed here only for the wave
vectors larger than qwf. For q < qwf, the modes are over-
damped. The TO phonon branch drops sharply into the
TA branch at qwf, resembling a waterfall (as shown in
Fig. 6 for 500 K), and for this reason, the phenomenon is
called “waterfall.” It has been observed not only in PMN
but also in other relaxor materials for which neutron in-
elastic experiments were performed, i.e. in PZN [56] and
PZNT [57]. In the same temperature range where the TO

Figure 6 Phonon dispersion curves in PMN crystal for the TA branch at
1100 K (solid circles) and the lowest-energy TO branch at three different
temperatures: T = 1100 K > TB (dashed line), T = 500 K < TB (open
circles), and T = 150 K < Tf (squares). (after Wakimoto et al. [55]).

Figure 7 Temperature dependence of TO-phonon energy squared measured
at (200) in PMN crystal. Vertical dashed lines correspond to Tf and TB. The
temperature range in which the waterfall feature appears is indicated by the
thick horizontal line. The other dashed and solid lines are guides to the eye.
(after Wakimoto et al. [55]).

mode is overdamped (between Tf and TB), the damping
of TA phonons is also enhanced (e.g. neutron inelastic
experiments in PMN revealed a large maximum of the
TA-phonon linewidth at ∼400 K [55]).

It was initially proposed that the large damping of TO
modes is due to the presence of PNRs which prevent the
propagation of phonons with wavelength larger than the
size of PNR, and thus qwf is the measure of the average
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size of the PNRs [54, 57]. Later it was shown [58] that
qwf depends on the choice of the Brillouin zone and the
relation of qwf to the size of PNRs is improbable. The
waterfall effect was then explained by the interactions
of acoustic and optic branches. It was also noticed that
damping of the soft mode near phase transition is not the
unique feature of relaxors; similar effect can be found in
some ordinary ferroelectrics [58].

An important question arises as to whether the low-
energy TO mode found in relaxors is really the FE soft
mode, i.e. whether the frozen mode displacements are re-
sponsible for the spontaneous dipole moment of PNRs and
for the spontaneous polarization of the low-temperature
FE phase. Initially the answer to the question was neg-
ative. Nabereznov et al. [39] compared the correlated
atomic displacements in PNRs (found by elastic diffuse
scattering experiments) and the TO-mode atomic dis-
placements and concluded that they are incompatible.
Besides, Vakhrushev and Shapiro [59] noticed that the
value of T0 derived from Equation 1 does not coincide
with TCW found in dielectric measurements and there-
fore this mode could not be the FE soft mode. They also
identified an additional “quasioptic” branch lying signif-
icantly lower in energy than the TO branch and having
the temperature variation consistent with the Curie-Weiss
behaviour of the dielectric constant. The quasioptic mode
was proposed to be the true soft mode. This opinion was
later disputed. The apparent conflict between diffuse and
soft mode scattering experiments was reconciled with the
help of the “phase-shifted condensed soft mode” model
proposed by Hirota et al. [40]. According to this model
the total displacement of atoms inside a PNR consists of
two components. The first component is created by the
TO soft-mode condensation and gives rise to the sponta-
neous polarisation of PNR. The second one results from a
uniform displacement of all atoms leading to the shift
of the PNR along their polar direction relative to the
surrounding non-polar matrix. Wakimoto et al. [60] de-
scribed the lattice dynamics by a coupling between TA
and TO modes without the need for considering any ad-
ditional quasioptic modes. The concept of soft coupled
optic mode was introduced. Being condensed, this mode
has the optic component responsible for the dipole mo-
ment of PNR and the acoustic component giving rise to
the uniform displacement of PNR as a whole. The mi-
croscopic origin of the uniform component is not yet
clear.

Infrared (IR) spectroscopy of PMN between 20 and
300 K [61] and of PLZT between 10 and 530 K [62]
revealed three main zone-centre TO modes as typical of
cubic perovskites. High-energy TO modes do not show
any pronounced temperature dependence both in PMN
and PLZT. The lowest-energy mode (which was also re-
solved by time-domain THz spectrometry) was found to
soften following Equation 1 with A < 0 and T0 ≈ TB,
i.e. in agreement with the above-discussed neutron scat-

tering data. Nevertheless, in contrast to the neutron data,
the mode remains underdamped in the whole tempera-
ture range. This discrepancy is related to the fact that
phonons with different wave-vectors are probed in IR (q
≈ 10−5 Å–1) and neutron (q ≥ 10−2 Å−1) experiments.

Raman scattering, which is known to be an effective
tool for studying the optic soft modes in the crystals with
normal phase transitions, was also widely applied to re-
laxors (see Refs. [63–65], for a review), but no soft mode
has been found here. Light scattering spectra in relaxors
appear to be quite complex and their interpretation is not
straightforward. In particular, it is not clear what kind of
disorder gives rise to the observed first-order lines that
are forbidden by the Pm3m (O I

h ) average symmetry of
relaxors.

Recently, vibration spectra in PMN were determined
theoretically from the first principles [66]. Although the
computations were performed for the case of composi-
tionally ordered structure (the real structure is disordered
with the inclusions of ordered CNRs, see Section 2), it
appeared to be possible to assign the calculated phonons
to the main peculiarities of Raman and IR spectra.

5. Origin and evolution of PNRs: Models
and theories

Although the very existence of PNRs in relaxors seems to
be doubtless, the cause and mechanisms of their formation
are not conclusively understood. At temperatures higher
than TB the structure and properties of relaxors closely
resemble those of normal displacive ferroelectrics. When
a relaxor becomes compositionally ordered after high-
temperature annealing (without changing the chemical
composition), a sharp ferro- or antiferroelectric (AFE)
phase transition is observed (see Section 2). These facts
seemingly suggest that the relaxor crystal tends to be
ferro- or antiferroelectric at low temperatures, but the
quenched compositional disorder somehow prevents the
normal transition into the phase with macroscopic FE or
AFE order from happening. Instead, the PNRs appear.
There exist different approaches to explain the formation
of PNRs. All of them can be schematically subdivided
into two categories. The models of the first category [8,
67–70] consider the PNRs as a result of local “phase tran-
sitions” or phase fluctuations so that the crystal consists
of nanosize polar islands embedded into a cubic matrix
in which the symmetry remains unchanged (as shown in
Fig. 8a). The models of the second category assume the
transition to occur in all regions of the crystal and the
crystal consists of low-symmetry nanodomains separated
by the domain walls but not by the regions of cubic sym-
metry [71, 72] (the example is shown in Fig. 8b). Note
that these two situations can hardly be distinguished ex-
perimentally by structural examinations [73] because the
local symmetry of cubic matrix is not expected to be cubic

37



FRONTIERS OF FERROELECTRICITY

- polar nanoregions - regions of cubic symmetry 

(a) (b)

Figure 8 Schematic representation of PNRs in relaxors according to the
different models.

and the thickness of domain walls (i.e. the regions where
polarization is not well-defined) is comparable with the
size of nanodomains.

The second category is represented by the random-field
model proposed by Westphal, Kleemann and Glinchuk
(WKG model) [71, 74], who applied the results of a the-
oretical work by Imry and Ma [75] to the relaxors. It was
shown in Ref. [75] that in the systems with a continuous
symmetry of order parameter, a second-order phase transi-
tion should be destroyed by quenched random local fields
conjugate to the order parameter. Below the Curie temper-
ature the system becomes broken into small-size domains
(analogy of PNRs) instead of forming a long-range or-
dered state. It should be emphasized that this model does
not consider the trivial case of the local spontaneous po-
larization which is directed parallel to the quenched field
when the field is strong enough. Instead the situation is
determined by the interplay of the surface energy of do-
main walls and the bulk energy of domains in the presence
of arbitrary weak random fields [75].

For displacive transitions, continuous symmetry means
that the spontaneous deformation is incommensurate
with the PE lattice. However, this is not the case for
the perovskite ferroelectrics in which the spontaneous
deformation and the polarization (order parameter) are
aligned along definite crystallographic directions (e.g.
the 〈111〉 directions for the rhombohedral phase). Never-
theless, when the number of allowed directions is large
(e.g. eight for the rhombohedral phase), the symmetry of
order parameter can be considered quasi-continuous and
the approach appears to be applicable. The disordered
distribution of the heterovalent ions inherent to the
compositionally disordered structure (e.g. Nb5+ and
Mg2+ ions in PMN) provides the source for quenched
random electric fields.

Ishchuk [72] analysed the thermodynamic potential in
the framework of Landau phenomenological theory for
the systems in which the energies of the FE and AFE
phases are close to each other. It was shown that the state
with coexisting FE and AFE domains may have lower
thermodynamic potential than the homogeneous (FE or

AFE) state. This effect is due to the interactions (electro-
static and elastic) between the FE and AFE domains. It
was suggested that relaxors are just the crystals in which
this effect occurs. In other words, the nonpolar regions,
coexisting with PNRs (FE domains), are the domains of
AFE structure.

The best-known model of the first category was devel-
oped in the early works by Isupov and Smolenskii [8,
22]. Due to the compositional disorder the concentrations
of different ions (e.g. Mg2+ and Nb5+ in PMN) are sub-
ject to quenched spatial fluctuations. As the FE Curie
temperature (TC) depends on the concentration, spatial
fluctuations of local TC are expected. It was suggested
that upon cooling, local FE phase transitions occur first in
those regions where TC is higher, whereas the other parts
of the crystal remain in the PE phase. Therefore, PNRs
are simply the regions with elevated Curie temperature.

Several other models use the microscopic approach and
consider the structural evolution and formation of PNRs in
terms of interatomic interactions. The FE lattice distortion
in the ordinary perovskites is known to be determined by a
delicate balance between the electrostatic (dipole-dipole)
interactions and the short-range repulsions. Hybridiza-
tion between the oxygen 2p states and electronic states of
cations (covalent bonding) is able to change this balance,
influencing thereby the phase transition temperature [25].
In the compositionally ordered (translationally symmet-
ric) crystals, exactly the same forces affect all the atoms
of a certain type because they have the same coordination
neighbourhood. In the case of compositional disorder, the
ions of different types may be found in the neighbour-
ing unit cells on the same crystallographic positions (e.g.
in the B-sublattice of PMN, both Mg and Nb ions are
the nearest neighbours of Nb ions). The interatomic in-
teractions which would cause ferro- or antiferroelectric
order in the compositionally ordered state become ran-
dom in this case, and as a result, the long-range polar
order is disturbed. The models described below empha-
size the importance of different interactions: the interac-
tions under random local electric fields only (including
dipole-dipole interactions) [67], and the dipole-dipole in-
teractions together with random short-range repulsions [9,
68] or random covalent bonding [33].

In the random field theory developed for relaxors by
Glinchuk and Farhi (GF model) [67] (see also Ref. [76]
in which the related papers are reviewed), the transition
is regarded as an order-disorder one, i.e. at high tempera-
ture the crystal is represented by a system of reorientable
dipoles (dipoles caused by the shifts of ferroactive ions
from their ideal perovskite positions, see Section 3.1).
These random-site dipoles are embedded in highly polar-
izable “host lattice” (the high polarizability is due to the
transverse optic soft mode existing in relaxors, see Section
4). The dipole-dipole interactions are indirect (they occur
via the host lattice) and random. Nevertheless, according
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to the theory, they should lead to uniformly directed local
fields and thus to FE ordering at low temperature (in con-
trast to direct dipole-dipole interactions which can lead to
a dipole glass state). Thus to explain the absence of macro-
scopic FE order in relaxors, additional sources of random
local electric fields are considered. These additional fields
can be static (coming from quenched compositional disor-
der, lattice vacancies, impurities and other imperfections)
or dynamic (associated with shifts of non-ferroactive ions
from the special positions). In contras to the fields consid-
ered in the WKG model, these fields should be rather large
(larger than critical value) to destroy the long-range FE
order. The FE order parameter, phase transition temper-
ature TC, linear and nonlinear dielectric susceptibilities
are calculated within the framework of statistical theory
using the distribution function for local fields. It is found
that depending on the model parameters (concentration
of dipoles, other field sources and the host lattice correla-
tion length), the low-temperature phase can be FE, dipole
glass or mixed ferroglass. In the temperature interval be-
tween TC and TB, the short-range clusters may appear, in
which the reorientable dipoles are ferroelectrically cor-
related (i.e. PNRs). In the ferroglass state these clusters
coexist with the macroscopic regions in which the dipoles
are coherently ordered.

Note that the GF model for relaxors is the extension of
the analogous theory for incipient ferroelectrics with off-
centre impurities (e.g. KTaO3:Li, Nb, or Na). In the later
case the off-centre impurities are the interacting dipoles.
Due to their small concentration the crystal can be con-
sidered as a system of identical dipoles with random
long-range interactions. In the case of complex perovskite
relaxors, the dipole concentration cannot be considered
small. The random interactions of different (short-range)
nature are also involved and thus the dipoles are not iden-
tical. It was first recognized in the model proposed by
one of the co-authors of the present review [9, 68]. In this
model the PNRs are the result of local condensation of the
soft phonon mode (which exists in relaxors as discussed
in Section 4). The consideration is based on the model
of coupled anharmonic oscillators which is often applied
to ordinary ferroelectrics. The effective Hamiltonian is
given by the sum of Hamiltonians of the individual unit
cells:

H =
∑

l

[
0.5�2

l + Alξ
2
l + Blξ

4
l −

∑

l ′
νll ′ξl〈ξl ′ 〉

]
,

where �l and ξ l are the generalized momentum and co-
ordinate of the soft mode displacements, Al and Bl are pa-
rameters of one-particle potential, which are determined
by the interactions (mainly short-range repulsive) between
ions of the lth unit cell, and υ ll

′ are parameters character-
izing the interactions (long-range dipole-dipole) between
the different cells. In the translationally invariant crystal,

all the parameters, Al, Bl, and υ ll
′, would be the same. In

the case of compositional disorder they are different. The
distribution function for these parameters is introduced
in the model. This distribution gives rise to the spatial
distribution of local “Curie temperature” TC. PNRs ap-
pear in the regions with enhanced local TC. The model
parameters are linked to the parameters of real structure
(in particular, the size of ions). Based on the crystal com-
position, this model is able to predict quantitatively the
degree of “diffusion” of the transition, i.e. the extent of
temperature interval in which the PNRs develop before
the crystal transform into the low-temperature nonergodic
phase. In particular, the degree of diffusion increases with
increasing difference in the radii of ions in the ferroactive
sublattice (A or B perovskite sublattice) or with increas-
ing compositional disorder in this sublattice.2 On the other
hand, the diffusion is much less sensitive to the disorder in
the non-ferroactive sublattice. The influence of the degree
of compositional disorder on TC is also explained. Based
on the arguments similar to those used in the original
model [68] it was recently suggested [77] that, because of
the randomness of microscopic forces responsible for the
onset of spontaneous polarization, each PNR can consist
of unit cells polarized in different directions. This model
of “soft nanoregions” also implies that, due to thermally
activated reorientations of some unit cells inside PNR, not
only the direction (as believed before), but also the mag-
nitude of the spontaneous dipole moment of individual
PNR can strongly change with time (due to fluctuations
or under the external field), while the size of PNR remains
the same.

The Hamiltonian considered in the model by Egami
[33] consists of two terms,

H = H1 + H2. (2)

The first term is written in a standard form

H1 = −
∑

i j

Ji j 
Si · 
Sj , (3)

where 
Si is the local polarization caused by the displace-
ment of i-th Pb ion from its special position (as discussed
in Section 3.1), Jij describes the random interaction be-
tween local polarizations mediated by oxygen and B-site
ions. It is explained that in PMN the Pb ions cannot form
the covalent bonds with those O ions which are bonded to
Nb. On the other hand, Mg ions create purely ionic bonds
and do not prevent the Pb–O bonding. Consequently the
direction towards Mg is an “easy” direction for Pb dis-
placement. This directional dependence of the energy of
Pb displacements resembles the crystalline anisotropy in

2In lead-containing complex perovskites the Nb and Ta cations are supposed
to be ferroactive.
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magnetic systems. It is random in compositionally disor-
dered crystal and can be described by model Hamiltonian
H2. This model was established to account for the re-
laxor properties in ER as wall as in NR phases, but the
appearance of PNRs was not derived.

Timonin [69] suggested that the ergodic phase in relax-
ors is an antilog of Griffiths phase theoretically predicted
long ago (but not yet experimentally found) for dilute fer-
romagnetics. Ferroelectric clusters of various sizes (i.e.
PNRs) appear in this model at T < TC (where TC is the
Curie temperature for non-dilute crystal) and specific non-
exponential relaxation is predicted.

Specific temperature evolution of PNRs can be ex-
plained in terms of the phenomenological kinetic theory
of phase transitions in compositionally disordered crys-
tals [70]. The emergence of PNR, i.e. the region of polar
crystal symmetry within the cubic surrounding, should
be accompanied by the creation of electric and elastic
fields around PNR, which increase the total energy of the
system. Due to the similar effects in the compositionally
ordered crystals undergoing a first-order phase transition,
the regions of the new phase (nuclei) are not stable. They
tend to grow if their size is larger than the critical one
or disappear otherwise. As follows from the theory [70],
in disordered crystals the nuclei of the new phase can be
stable and the equilibrium size of newly formed nuclei
can be arbitrary small. The PNRs in relaxors which are
really small (contain several unit cells) and stable can
be regarded as such kind of nuclei. The theory predicts
that PNRs begin to appear in the PE phase at TB as a
result of local “phase transitions” (e.g. condensation of
phonon soft mode). Upon cooling, the number of PNRs
increases but the equilibrium size of each PNR remains
unchanged within a certain temperature interval just be-
low the temperature at which it appears. Upon further
cooling, the PNR grows slowly with decreasing tempera-
ture while remaining in a stable equilibrium, and finally
at T = TC, becomes metastable so that the size of PNR in-
creases steeply due to phase instability. In other words, the
behaviour predicted by this model is the same as experi-
mentally observed in PMN (see Fig. 5). But this theory is
unable to describe quantitatively the real behaviour at T <

TC, because it does not take into account the interactions
between different PNRs, which are obviously significant
at low temperatures. It was further explained [70, 78]
that depending on the model parameters (in particular, the
mean TC and the width of the distribution of local tran-
sition temperatures), a sharp phase transition can occur,
resulting in large FE domains at T < TC (in the case of a
small width and a comparatively high TC) or the transi-
tion is diffuse and the low-temperature polar regions are
of nanometer size. The dipole-dipole interactions between
them can lead to the formation of a glass-type phase at
a certain temperature Tf . The intermediate situations are
also possible with moderately diffuse transition and meso-

scopic polar regions (domains). Note that these different
types of behaviour have indeed been observed experimen-
tally in different perovskite materials (see Section 7.2).

6. Dielectric response in relaxors
Small-signal dielectric response has been intensively stud-
ied in a large number of relaxor materials, but most in-
vestigations were restricted within the frequency range
of 10–109 Hz or narrower. In the past few years, mod-
ern measurement facilities with enlarged frequency range
have been applied to relaxors. It has been found that sig-
nificant dielectric dispersion exists in the whole spectrum
starting from the frequency of lattice vibrations down to
the lowest practically measurable frequency of f ∼10−5

Hz. The present section will focus on these works.
The field-induced polarization in relaxors can be di-

vided into several qualitatively different parts so that the
total relative permittivity in the temperature range of per-
mittivity maximum can be written as

ε = 1 + χe + χPh + χR + χU + χLF, (4)

where χ e, χPh, χR, χU and χLF are the susceptibilities
(complex numbers) describing the electronic, phonon,
“conventional relaxor” (CR), “universal relaxor” (UR)
and “low-frequency” contributions, respectively. All the
contributions are frequency dependent [in Equation 4 the
susceptibilities are ranked in the order of increasing typ-
ical characteristic time]. As in any materials, electronic
contribution persists in relaxors at all temperatures and at
frequencies up to 1015–1017 Hz, but at lower frequencies,
the value ofχ ′

e = (n2 − 1) ∼10 is small as compared with
other susceptibilities.

The phonon (lattice) susceptibility (caused by the mu-
tual displacements of cation and anion sublattices) is ac-
tive up to the frequencies of 1012–1014 Hz. To separate χPh

from other contributions, measurements at these frequen-
cies are necessary. In relaxors χPh has been determined
from IR reflectivity spectra at temperatures lower than TB

only. In PMN crystals, χPh increases from ∼40 at 20 K to
∼100 at 300 K [61]. In other words, it constitutes less than
1% of the total low-frequency permittivity measured at Tm

(see Fig. 1). This is an important difference of relaxors
from ordinary displacive ferroelectrics in which phonon
polarization totally accounts for the permittivity peak at
the phase transition.

The susceptibilities χR and χU related to the relaxation-
type polarizations are the main contributions giving rise to
the peculiar relaxor peaks in the temperature dependences
of permittivity (shown in Figs 1 and 9). The real part of
χR is constant at low enough frequencies and decreases
to zero when the frequency reaches the (temperature-
dependent) characteristic value. This decrease is accom-
panied by the peak in the frequency dependence of the
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imaginary part.3 Both real and imaginary parts of the UR
susceptibility continuously (without any loss peak) de-
crease in the whole frequency range practically available
for measurements according to the power law

χ ′
U = tan(nπ/2)χ ′′

U ∝ f n−1, (5)

where n is close to but smaller than unity. Note that the
same empiric classification (i.e. the monotonic frequency
variation versus the variation with loss maximum) applies
not only to relaxors, but also to the relaxation processes
found in many other solids [79]. Nevertheless, the val-
ues of χR and χU in relaxors are extraordinary large as
compared to other dielectrics. The CR dispersion (CRD)
is observed at the low-temperature slope of permittivity
peak giving rise to the frequency shift of Tm, while the UR
dispersion (URD) exists at temperatures lower, as well as
higher, than Tm (as shown in Figs 1 and 9).

The last term χLF in Equation 4 combines all possible
relaxation contributions not related to the relaxor ferro-
electricity, which may include the polarization of hopping
charge carriers [79, 80], Maxwell-Wagner-type polarisa-
tion, etc. Typically, these contributions become significant
in good-quality samples of relaxor perovskites at compar-
atively high temperatures and/or low frequencies. In the
PMN crystal presented in Fig. 1 the contribution of χLF at
lowest frequency f = 10−2 leads to the noticeable increase
of ε′′ at temperatures above ∼300 K.

In the radio- and audio-frequency ranges, where the
dielectric properties of relaxors are most often studied, the
value of χ ′

R is much larger than χ ′
U . That is probably the

reason why the UR contribution has been discovered only
recently with the help of the frequency response analyser
that is able to work at ultra-low frequencies [as one can
see from Equation 5, χ ′

U increases with decreasing f ].
The χU component was separated from the χR one by
means of the analysis of dielectric spectra at T > TC

(or T > Tf) first in PMN-PT [80–82] and then in PMN
[77], PSN [83] and BTZ [84]. Since CR is the dominant
contribution giving rise to the diffuse ε′(T) peak, χ ′

R ≈ ε′
in the vicinity of Tm (at least for the frequencies that
are not very low or very high). Therefore, most of the
dielectric investigations of relaxors dealt in fact with the
CR contribution, even though it was not identified by the
authors.

As shown recently for many relaxors [85, 86], the high-
temperature slope of the diffuse ε′(T ) ≈ χ ′

R(T ) peak can
be scaled with the empirical Lorenz-type relation,

εA

ε′ − 1 = (T − TA)2

2δ2
, (6)

3The well-known Debye relaxation is an example of such kind of the be-
haviour.

Figure 9 Different possibilities for the temperature evolution of struc-
ture and dielectric properties in compositionally disordered perovskites: (a)
canonical relaxor; (b) crystal with a diffuse relaxor-to-ferroelectric phase
transition at TC < Tm; (c) crystal with a sharp relaxor-to-ferroelectric phase
transition at TC < Tm; (d) crystal with a sharp relaxor-to-ferroelectric phase
transition at TC = Tm. The temperature dependences of the dielectric con-
stant at different frequencies f are schematically shown. The temperature
intervals in which the Lorenz-type Equation 6 and the Curie-Weiss law hold,
the regions of conventional relaxor dispersion (CRD) and universal relaxor
dispersion (UR) and the types of structure [paraelectric (PE), nonergodic
relaxor (NR), ergodic relaxor (ER), ferroelectric (FE)] are identified. Note
the similar behaviour at high temperatures in all cases.

where TA (< Tm) and εA (> εm) are the fitting parame-
ters defining the temperature and magnitude of the Lorenz
peak (6), and δ is as a measure of the degree of diffuse-
ness of the peak. This formula gives a more adequate
description of the experimental data than the previously
used relation, εm/ε′′ − 1 ∝ (T − Tm)γ (where 1 < γ < 2,
and εm is the value of ε′ at Tm). Equation 6 holds from
temperature T1, which is typically several degrees higher
than Tm, to temperature T2, which is a few dozens of de-
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grees lower than TB (see Fig. 9). The diffuse peak of ε′′(T)
≈ χ ′′

R(T) can be scaled with more complex relations (see
Refs. [19, 87] for details).

At T > TB, the dielectric constant is described by the
Curie-Weiss law,

ε′ = C/(T − TCW ),

where the Curie constant, C, has the same order of mag-
nitude (∼105 K) as in ordinary displacive ferroelectrics
and TCW is typically higher than the low-frequency value
of Tm (as shown in Fig. 4) but at high frequencies (e.g. in
PMN at f > 20 GHz) Tm can become larger [52].

The CR contribution can consist of several compo-
nents in itself involving different polarization mecha-
nisms. Each of the mechanisms gives rise to the corre-
sponding dispersion and can be seen in the ε′′(f) curve
as an individual maximum (or an anomaly if neighbour-
ing maxima overlap each other). For example, in PMN
crystals three components (dispersion regions) have been
found at T < TB [52, 61, 88], which were resolved simulta-
neously between 210 K (≈Tf) and 290 K. The first compo-
nent appears at the (temperature-independent) frequency
of ∼1 THz and gives rise to a comparatively small input
to the static dielectric constant (about 130). The two other
dispersion regions become broadened on cooling and their
mean relaxation time increases [i.e. the frequency of the
corresponding ε′′( f ) peak decreases], so that at T < Tf

the low-frequency component shifts out of the measure-
ment frequency range and the higher-frequency compo-
nent develops into a constant (frequency-independent in
the range of 102–1011 Hz) loss. This effect of constant
loss is a noticeable property of the low-temperature non-
ergodic phase in relaxors. It can also be observed in other
relaxors, e.g. in the PLZT ceramics [89] and the com-
positionally disordered PIN crystals [19]. The magnitude
of constant loss decreases exponentially on cooling, but
still remains measurable at liquid-helium temperature. At
extremely low frequencies ε′′ in NR phase is no longer
constant and slightly increases with decreasing frequency
(see Fig. 1).

To describe the CR dielectric spectra, the same empiri-
cal expressions as used for other dielectrics were applied.
The Kohlrausch-Williams-Watts [80, 90], the Havriliak-
Negami [91] and the simpler Cole-Cole [19, 89] formulae
have been employed by different authors to fit the ex-
perimental ε(f) data. The alternative way to analyse the
dispersion is to find the appropriate function for the distri-
bution of relaxation times. For example, Rychetsky et al.
[89] fitted the relaxation in PLZT to a uniform distribution
that broadens upon cooling.

A remarkable feature which was observed first in PMN
[92] and then in many other relaxor ferroelectrics is the
Vogel-Fulcher (VF) law connecting the temperature and

the frequency of the ε′(T) peak:

f = (2πτ0)−1 exp [−Ea/(Tm − TVF)] , (7)

where f is the measurement frequency, τ 0, Ea and TVF are
the fitting parameters. The same relation but with slightly
different parameters has also been reported for the peak
temperature in the ε′′(T) dependences (Tmi). Investigations
of PIN crystals showed that the parameters of Equation 7
can be different in different frequency intervals [19]. The
VF law was known in structural and spin glasses. When
revealed in relaxors, it became one of the main reasons to
postulate the existence of a dipole glass phase at T < TVF.
Equation 7 might (but not necessarily, see below) signify
the similar VF relation for the characteristic relaxation
time τ of the corresponding relaxation process:

τ = τ∞ expEb/(T − T f )�, (8)

where τ∞, Eb are the parameters and Tf is the freezing tem-
perature (i.e. the temperature below which the relaxation
time becomes infinite). This divergence of τ indicates that
the thermally activated reorientations of dipoles respon-
sible for polarization slow down with decreasing tem-
perature and become impossible (consequently dipoles
cannot respond to the electric field) at T = Tf , but not at T
= 0 as prescribed by the Arrhenius law for the dynamics
of independent dipoles. In dipole glasses the interactions
among the dipoles are the cause for such kind of freez-
ing. These interactions (bonds) are frustrated (i.e. can be
either FE or AFE but cannot be satisfied simultaneously)
and thus favour the configurations with random directions
of dipoles, in contrast to the ferroelectrics and antiferro-
electrics in which the dipole directions are parallel and
antiparallel, respectively.

The relations between Equations 7 and 8 in relaxors
were studied by several authors. In the case of Debye re-
laxation (which can be expected in the system of identical
non-interacting dipoles) this relation should be simple: τ

follows the Arrhenius law [which is the same as the VF law
(8), but with T f = 0� and this automatically means that
law (7) also holds for Tmi with the same parameters, i.e.
τ0 = τ∞, Ea =Eb and TVF = 0. The relaxation in relaxors
is much more complex and can be characterized by a wide
spectrum for the distribution of the relaxation times. Sim-
ple relations between the parameters of Equations 7 and
8 are not evident. Furthermore, different relaxation times
from the spectrum may have different freezing tempera-
tures. It was also shown theoretically that the situations
are possible in which Equation 7 holds with TVF �= 0, but
no freezing at a non-zero temperature really takes place
[93], i.e. the VF relationships for Tm and Tmi do not nec-
essarily imply glass-type dipole dynamics. The problem
seems to be solved in some relaxors by means of a special
analysis of the frequency-temperature dependences of the
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real part of permittivity. It was shown that the longest re-
laxation time in the spectra of PMN [94, 95], PST [94]
and PLZT [96] diverges according to the relationship (8)
with Tf = TVF (≈220 K in PMN), while the bulk of the
distribution of relaxation times remains finite even below
Tf [95, 96]. The divergence of the longest relaxation time
means that, at least empirically, the behaviour of relaxors
in small-signal electric field is similar to the behaviour
of dipole glasses. However, a microscopic interpretation
of this fact is not so clear. In contrast to ordinary dipole
(or spin) glasses in which the susceptibility can by un-
ambiguously attributed to the reorientation of certain per-
manent dipoles (spins), the structure of relaxors is more
complex and the polarization mechanisms responsible for
the large and diffuse ε(T) peak have not been definitely
identified.

Most of the existing explanations relate the dielectric re-
laxation in relaxors to the PNRs. The PNRs are very small
and can be considered as individual thermally activated
dipoles giving rise to the orientational polarization. Thus,
the dominant contribution to the measured ε(T) relaxor
peak (i.e. the CR contribution according to the classifica-
tion described above) may be attributed to the thermally
activated reorientation of dipole moments of PNRs (lo-
cal spontaneous polarization vectors). Many authors pro-
ceeded upon this assumption when analysing the dielec-
tric data (see e.g. Refs. [97–99]). The dipole moments of
PNRs are considered in many models as interacting (di-
rectly or via surrounding matrix) entities constituting a
glassy system (see Sections 5 and 7.3). The reorientations
may be affected by the random anisotropy and (in contrast
to magnetic spin glasses) by an environment of random
electric and elastic fields.

The second possible mechanism associated with PNRs
is the side-way motion of their boundaries without the
change of the orientation. In the course of such motion, the
volume (and thereby the dipole moment) of the polar re-
gion changes, giving rise to the characteristic polarization
response. This looks like breathing of PNRs and there-
fore, the corresponding model developed by Glazounov
and Tagantsev is called “breathing” model [100]. The
model considers the vibrating PNR boundaries in terms
of the theory of randomly pinned interface, which was
developed earlier for magnetic materials. In the case of
relaxors the internal random local fields induced by charge
disorder act as the pinning centres. Another approach
was used by Rychetsky et al. who proposed a thermo-
dynamic model for the polarization reversal near the PNR
boundary, which is equivalent to the displacement of the
boundary [89]. In particular, this model describes well the
constant loss effect at low temperatures. From the analy-
sis of the behaviour of PMN crystals in large dc and ac
electric fields, it was suggested [101] that the dielectric re-
sponse in the ergodic phase [i.e. in the vicinity of the ε(T)
maximum] is controlled by the vibration of PNR bound-

aries, rather than by the thermally activated reorientations
of PNRs.

Note that in PMN and some other relaxors two main
components determine the CR dielectric response in
the ergodic phase (see above in this section). The low-
frequency component may result from the reversal of
the spontaneous dipole moments of PNRs and the high-
frequency one may originate from the PNR boundary mo-
tion [88].

The value of the universal susceptibility [i.e. the sus-
ceptibility whose dispersion is described by Equation 5
at all frequencies] in relaxors is several orders of magni-
tude larger than in non-relaxor materials with the same
n [80]. Thus it is reasonable to suggest that the UR po-
larization mechanism is also connected with PNRs which
are inherent only in relaxors. Within the scope of the soft
nanoregions model (see Section 5), the UR response has
been attributed to the thermally activated reorientations of
dipole moments of individual unit cells inside PNRs [77].

The Curie-Weiss law in relaxors can be treated in two
different ways, depending on the polarization mechanism
which is supposed to be valid in the temperature range of
the law (i.e. at T > TB). The first way (see e.g. Refs. [52,
59, 60, 88, 102]) implies that, as in the case of normal per-
ovskite (displacive) ferroelectrics, the field-induced po-
larization is due to the phonon contribution. The second
approach suggests that the polarization mechanism in the
temperature range of the Curie-Weiss law is qualitatively
the same as at Tm (by analogy to order-disorder ferro-
electrics and spin glasses) and involves the relaxation
of individual dipoles (see e.g. Ref. [103] in which the
Sherrington-Kirkpatrick model was used to analyze the
susceptibility in PMN). To determine which way is ad-
equate, the experimental investigation of high-frequency
(IR) dispersion at T > TB is needed.

7. Relaxors at low temperatures: A glassy state
or a ferroelectric phase

In the previous sections we have mainly considered the
relaxors at comparatively high temperatures, i.e. in the
PE and ER phases. We have also discussed some basic
aspects of the low-temperature behaviour of canonical
relaxors, i.e. those in which the structure remains macro-
scopically cubic at all temperatures and the FE phase can
be achieved only by poling (e.g. by applying an external
electric field). In the canonical relaxors (e.g. PMN, PMT,
PLZT with large x), a nonergodic (glassy) state appears
at low temperatures. In many other materials (e.g. PSN,
PST, PLZT with small x, and PMN-PT with large x) that
exhibit relaxor properties and related structural features
(e.g. PNRs) at high temperatures, a spontaneous (i.e. with-
out poling) structural phase transition into the FE phase
occurs. These two different paths of temperature evolu-
tion are shown schematically in Fig. 9. In this Section,

43



FRONTIERS OF FERROELECTRICITY

we describe the low-temperature behaviour of relaxors in
more detail.

7.1. Glassy nonergodic relaxor phase
7.1.1. Structure
As mentioned in Section 4 the soft mode in the prototypi-
cal relaxor PMN recovers below Tf so that the temperature
dependence of the mode frequency shows the behaviour
characteristic of a normal ferroelectric phase [i.e. follows
Equation 1 with A < 0]. A sharp peak of hypersonic
dumping was observed at Tf [104]. However, no other
evidence of the structural phase transition at Tf has been
detected. The average cubic symmetry of PMN at low
temperatures was confirmed in many structural studies by
the absence of any splitting of X-ray and neutron Bragg
reflections (which means that the shape of unit cell is cu-
bic) as well as by the analysis of the intensities of the
reflections (which are sensitive to the positions of atoms
in the cell). For instance, in Refs. [27, 73], the unit cell
was determined to be cubic by X-ray and neutron powder
diffraction experiments performed down to 5 K, but due to
the limited number of reflections analysed, the positions
of atoms and the thermal parameters could not be refined
simultaneously. In Refs. [105, 106], the analysis of a large
number of reflections obtained from X-ray diffraction of
PMN single crystals confirmed the Pm3m space group
in the range of 100–300 K. The cubic structure is also
confirmed by the absence of birefringence [107, 108].4

Even though the structural phase transition in PMN
is not definitely observed, some important structural
changes not affecting the average symmetry are still
found. With decreasing temperature, the average size
of PNRs increases significantly around Tf (Fig. 5). The
synchrotron X-ray scattering revealed the emergence of
very weak and wide 1/2(hk0) superlattice reflections (α
spots) in the vicinity of Tf [110]. These reflections were
attributed to the antiferroelectric nanoregions (AFNR)
formed by the correlated anti-parallel (static or dynamic)
displacements of Pb ions along the 〈110〉 directions with
a magnitude of ∼0.2 A

◦
. Significant enhancement of the

intensity of α spots below Tf is believed to arise from an
increase in the total number of the AFNRs, whose average
size of ∼30 A

◦
(determined from the width of reflections)

remains constant down to the lowest measured tempera-
ture of 10 K [110]. AFNRs appear to be different from
PNRs and CNRs, and unrelated to either of them [110].

7.1.2. Broken ergodicity in relaxors
Relaxors show nonergodic behaviour resembling the be-
haviour of spin (or dipole) glasses. In the high temperature

4While most researchers agree that the average structure of PMN is cubic,
the rhombohedral structure was also reported [109]. The possible reason
for this discrepancy will be discussed in Section 7.2.

(ergodic) phase of glasses, the spins (or dipoles, which can
be considered as pseudospins) are weakly correlated and
free to rotate, so that after any excitation (e.g. after appli-
cation and removal of an external field) the system quickly
comes back to the state with the lowest free energy, i.e. the
state with zero total magnetization. It is always the same
state regardless of the initial conditions (i.e. the strength
and direction of the field in our example). At lower tem-
peratures, due to the correlations between spins, the free
energy surface has very many minima of almost the same
depth separated by energy barriers of different heights
(each minimum corresponds to a specific configuration of
spins). In the glass phase, some of these barriers are so
high that the time needed to overcome them is larger than
any practically reasonable observation time. Therefore,
during this time the system cannot reach all the configu-
ration states, and consequently, the usual thermodynamic
averaging and the time averaging give different results, i.e.
the system is in a nonergodic state. On its way to a new
state of minimum free energy required by the changed ex-
ternal conditions, the system should pass many barriers of
different heights. This leads to a process with a wide distri-
bution of relaxation times. The maximum relaxation time
from this distribution may be so large (infinite for an in-
finite crystal) that the system cannot effectively reach the
equilibrium. As a result, the state and the physical proper-
ties of the material depend on the history (i.e. the external
field applied, the temperature variations, the observation
time, etc.). In particular, substantial ageing effects should
be observed, i.e. the change of properties with time spent
by the sample at certain fixed external thermodynamic
parameters (temperature, field, etc.).

All the main (mutually related) characteristics of noner-
godic behaviour typical of spin glasses, i.e. anomalously
wide relaxation spectrum, ageing, dependence of the ther-
modynamic state on the thermal and field history of a
sample, are observed in relaxors at temperatures around
and below Tf . The slowing-down of dipole dynamics was
already discussed in terms of small-signal dielectric re-
sponse in Section 6. Slow relaxation manifests itself also
in other properties related to the local and/or macroscopic
polarization. In particular, the relaxation of optical linear
birefringence induced in PMN by a weak (E < Ecr) ex-
ternal electric field was studied [107] (Ecr is the critical
field needed to induce the transition to the FE phase).
The Kohlrausch-Williams-Watts-type and the Curie-von
Schweidler-type relaxations were found in the tempera-
ture intervals of 180 < T < 210 K and 210 < T < 230 K,
respectively. The results were successfully described in
terms of Chamberlin’s approach to dynamic heterogene-
ity [111], implying a broad relaxation spectrum. Applica-
tion of a strong (E > Ecr) d.c. field to the PMN crystal at
T < Tf results in a nearly logarithmic decay of dielectric
permittivity [112] and a slow evolution of X-ray Bragg
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Figure 10 Linear birefringence measured subsequently as a function of
temperature on zero-field cooling (ZFC), field heating with E = 1.2 kV/cm
< Ecr (FH), field cooling (FC) and zero-field heating (ZFH), illustrating the
nonergodic behaviour of PMN crystal. (after Kleemann et al. [107]).

peaks reflecting the change of crystal symmetry [113].5

The effects of ageing of susceptibility in the NR phase of
PMN and in the typical spin glass phase were found to
be very similar (and much stronger than in typical dipole
glasses) [114]. The example of the dependence of prop-
erties on the thermal and electrical history of sample is
shown in Fig. 10. The other examples are the splitting in
the temperature dependences of the field-cooled and zero-
field-cooled quasistatic dielectric constants in PMN and
PLZT [95, 96] and the P(E) hysteresis loops (see Section
7.1.3),

The ergodicity is clearly broken in relaxors at low tem-
peratures, but this does not necessarily mean that relax-
ors are really dipole glass systems. Many other systems
may also be nonergodic [115]. In particular, an ordinary
FE phase is also nonergodic, but its potential landscape
contains only a few minima (which are symmetric and
correspond to the different directions of spontaneous po-
larization). As a result, the properties are easily distin-
guishable from those of nonergodic spin glass (or relaxor)
phase. Wide relaxation spectrum and ageing phenomena
are absent in the ideal FE crystal. But in the composi-
tionally disordered perovskite crystal the situation is very
different and different explanations for the nonergodic be-
haviour are possible. For instance, the above-mentioned
Kohlrausch-Williams-Watts-type relaxation of birefrin-
gence was explained by domain wall displacements, rather
than by the reorientations of dipoles [107]. Furthermore,
some peculiarities of the relaxor behaviour have never
been observed in spin and dipole glasses. In particular,
the Barkhausen jumps during poling process (detected
optically in PMN) are not compatible with the glassy
reorientation of dipoles, which takes place on a micro-

5After a long (several hours) waiting time the entire crystal suddenly trans-
forms to the FE phase via a first-order transition.

scopic length scale and hence should be continuous and
monotonic [71]. Field-induced FE phase and FE hystere-
sis loops have not been observed in typical dipole glasses.
Thus, the nature of the nonergodic phase in relaxors re-
mains the subject of intensive discussion. In particular,
the WKG model suggests that the low-temperature phase
of canonical relaxors is a ferroelectric state, but broken
into nanodomains by quenched random fields. We will
discuss the origin of nonergodic phase in more detail in
Section 7.3.

Note also that in terms of compositional disorder, relax-
ors are frozen in a metastable state, as discussed in Section
2. The degree of compositional disorder can depend on
thermal prehistory. This is also an effect of nonergodic-
ity.6 However, at temperatures around TB and below, the
compositional disorder remains unchanged on the exper-
imental time scales (i.e. frozen), and at the same time, the
motion of dipoles (at T > Tf) is fast. Thus, when consid-
ering the subsystem of dipoles at T > Tf , one can believe
that the crystal reaches the equilibrium7 and the phase is
effectively ergodic. On the other hand, if the sample has
been annealed during experiment at high temperatures
(∼700 K or higher) the possible effects of nonergodicity
related to the compositional disorder should be taken into
account.

7.1.3. Electric-field-induced ferroelectric
phase in relaxors

An important feature of the NR state is that, it can be
irreversibly transformed to the phase with the FE dipole
order when poling by an electric field larger than the crit-
ical strength (in PMN the minimal Ecr is about 1.7 kV/cm
at TC � 210 [108]). This feature points to the common na-
ture of relaxor and normal ferroelectrics. The FE hystere-
sis loops, which are known to be the determinative char-
acteristic of FE phase, are observed in relaxors with the
values of remnant polarization and coercive field typical of
normal ferroelectrics. Pyro- and piezoelectric effects are
also observed after poling. X-ray diffraction [113, 117]
and optical [108] investigations of poled PMN crystals
showed that the field-induced phase has the rhombohe-
dral 3m symmetry, i.e. the same symmetry as in several
normal perovskite ferroelectrics. On the other hand, lo-
cally the structure is inhomogeneous, i.e. different from
normal ferroelectric structure. The traces of cubic phase
were observed at low temperature by X-ray diffraction
experiments in poled PMN crystal [113]. The NMR in-
vestigations of PMN crystal poled by a field almost two

6In contrast to spin (dipole) or FE state where the relaxation time is expected
to become infinite in infinite crystal, the rate of compositional ordering does
not depend on a crystal size. The corresponding relaxation time at nonzero
temperature can be very large, but not infinite.

7According to Feynman [116], a system is in equilibrium if “all the fast
things have happened and all the slow things have not”.
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times as large as Ecr, revealed that only about 50% of Pb
ions are displaced parallel to the [111] poling direction
in a FE manner, while the other 50% exhibit spherical
layer-type displacements characteristic of PE phase [32].
The size and number of AFNRs found in PMN in the un-
poled state (see Section 7.1.1) remain unchanged in the
FE phase [110].

Upon heating, the FE phase transforms to the cubic
(ER) phase at a well-defined temperature, TC (≈210 K
in PMN). This first-order phase transition is accompa-
nied by a step-like drop of spontaneous polarization (as
determined from pyroelectric current), sudden vanishing
of birefringence, and sharp peak of dielectric constant. A
more detailed description of the field-induced transition
and FE phase in relaxors is given in Ref. 11.

7.2. Spontaneous relaxor-to-ferroelectric
phase transition

The transition from the ER to the FE phase typically
takes place at temperature TC, which is several degrees
or several dozens of degrees lower than Tm, as schemat-
ically shown in Fig. 9b and c. Usually the transition is
observed in those relaxors where the ε′(T) peak is not
very diffuse (i.e. the diffuseness parameter δ is relatively
small). X-ray and neutron diffraction experiments unam-
biguously indicate the change of symmetry at TC from
the high-temperature cubic to a low-temperature tetrag-
onal or rhombohedral (in most cases) one [118, 119].
The symmetry breaking is also confirmed by the appear-
ance of Brillouin scattering peaks which are forbidden
in cubic phase [48], the appearance of optical birefrin-
gence [120], and the formation of FE domains which are
clearly observed by optical polarizing microscopy [121,
122], electron microscopy [123] and scanning force mi-
croscopy [124–126]. The FE phase in relaxors exhibits
typical FE properties, namely the large dielectric con-
stant, the FE hysteresis loops [118, 121, 127], the pyro-
[128] and piezoelectric (see below) effects, etc. At tem-
peratures slightly above TC, double hysteresis loops can
be observed [118], as is typical of normal ferroelectrics.

The spontaneous relaxor-to-ferroelectric phase transi-
tion can be accompanied by significant anomalies in the
temperature dependences of structural parameters [118,
119, 128], dielectric [4, 82, 118], optical [4, 120, 128],
thermal [118, 128] and other properties. The transition
can be very sharp: e.g. in PFN crystals, the related jump
of ε(T) occurs in a temperature interval smaller than 0.1 K
[130]. In many other cases, it is smeared for different rea-
sons. The change of ε(T) in ceramics is usually not as
sharp as in single crystals, probably because of the inho-
mogeneity related to the existence of grains and bound-
aries [131]. Another type of inhomogeneity that can smear
the transition in the relaxor-based solid solution crystals
(e.g. PMN-PT, PZN-PT) is the macroscopic variation of

x across the sample [120, 132]. Besides, some “intrinsic”
causes for the smearing of phase transition also exist so
that a clear boundary between the canonical relaxors (in
which the anomalies of structure and properties are dif-
fuse or absent) and the relaxors with a sharp FE transition
cannot be defined. The intermediate behaviour can appear
in different ways. X-ray diffraction studies of PZN crys-
tals revealed the coexistence of the mesoscopic domains
of FE phase and the regions of cubic (relaxor) phase in a
temperature range of about 70 K around the mean TC [78,
133]. The concentration of the cubic phase gradually de-
creases on cooling, i.e. the transition is highly diffuse. The
size of FE domains in PZN (40–200 nm) [78, 133] and
in disordered PST (25–75 nm) [123] is smaller than in a
normal FE phase, but larger than the size of typical PNRs.
The average domain size (at room temperature) in the
(1−x)PMN−xPT solid solutions was found, by scanning
force microscopy, to gradually increase from ∼40 nm in
the rhombohedral phase with x = 0.1, to ∼2 µm (which is
comparable to the domain size in ordinary ferroelectrics)
in the tetragonal phase with x = 0.4 [126].

Because of the similarity between the FE phase in or-
dinary ferroelectrics and the FE phase in relaxor ferro-
electrics, the transition at TC was initially called “sponta-
neous relaxor-to-normal ferroelectric transition,” but later
investigations showed that the low-temperature phase in
relaxors is not exactly a “normal” ferroelectric phase, even
in those relaxors where the FE transition is relatively sharp
and FE domains are large. In particular, in the PMN-PT
crystals with x = 0.35, the central peak in the Brillouin
spectra, which is related to the relaxation of PNRs, was
observed not only at T > TC (see Section 3.2), but also at
T < TC, indicating that the PNRs persist in the FE phase
[48]. Furthermore, macroscopic (1–2 µm) areas of aver-
age cubic symmetry were found alongside with the areas
of FE phase [48]. In PMN-PT crystals with x = 0.20,
the piezoresponse force microscopy revealed a continu-
ous distribution of the sizes of polar regions starting from
∼5 nm (resolution limit). The complex structure of the
micron-size FE domains with the PNRs of the opposite
polarity embedded in them was observed [125]. A mix-
ture of the rhombohedral domains and the domains of a
different low-symmetry (presumably monoclinic) phase
was observed by synchrotron X-ray diffraction in the
FE phase of PZN crystal [78]. Unlike the plane walls
in ordinary ferroelectrics, the domain walls in relaxor fer-
roelectrics are usually diffuse and irregular [122, 124].
The IR spectroscopy of PZN-PT and PMN-PT crystals
(with x = 0.08 and x = 0.29, respectively) did not re-
veal any phonon softening that was expected for normal
FE phase transitions at TC and below [134]. Accordingly,
the phonon contribution to the dielectric constant at these
temperatures is small (∼100), i.e. much less than the low-
frequency value that reaches ∼5 × 104 at T = TC and ∼5
× 103 at T << Tc. Therefore, similarly to the case of
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canonical relaxors (and in contrast to ordinary displacive
ferroelectrics), the dielectric response is determined by
the relaxation polarization at all temperatures around and
below the dielectric peak. It was concluded that the tran-
sition into the FE phase consists in a stepwise increase in
the size of PNRs which transform into FE domains [134].

Another phenomenon, which is unusual for ordinary
ferroelectrics, is the specific macroscopic phase inhomo-
geneities discovered recently in good-quality crystals of
some relaxor ferroelectrics. Diffraction experiments per-
formed in PZN with X-ray of different energies (and thus
different penetration lengths) revealed that the outer layer
(an estimated thickness of ∼10–50 µm) undergoes a struc-
tural phase transition into the FE phase while the lattice
inside the crystal maintains the cubic unit cell [135, 136].8

Another interesting point is that at all temperatures the
lattice parameter of the outer layers is slightly (∼0.2%)
smaller than that of the bulk (inside) [136]. The same
feature, i.e. a FE “skin” (observed by low-energy X-ray
diffraction) and a cubic phase in the bulk (observed by
high-energy X-ray or neutron diffraction), was also found
in PZN-PT [137, 138] and PMN-PT [139] crystals with
small x. It was suggested that this cubic phase (named
X-phase) is similar to the average cubic phase in pure
PMN [140], i.e. it is a NR phase. As a typical NR phase,
the X-phase can be irreversibly transformed into the FE
phase by poling [137].

Using spatially resolved neutron diffraction technique,
it was found that even in PMN crystals, where the rhom-
bohedral phase has not been detected, the near-surface
layer (of ∼100 µm thick) has the lattice constant notice-
ably smaller than the bulk structure [141]. It was supposed
[140] that a very thin rhombohedral skin possibly exists
in PMN also, with a thickness much smaller than the pen-
etration length of X-rays, so that the skin could not be
detected in the usual diffraction experiments. Note in this
connection that, as reported in Ref. [109], the Rietveld
refinement of neutron diffraction data collected on PMN
powder revealed a rhombohedral macroscopic symmetry,
namely R3m at 300 K (i.e. above Tf) and R3c at 10 K.
Second harmonic generation signal was also detected, in-
dicating a non-centric symmetry. In these experiments,
very fine powder (of 4–5 µm particle size) synthesized
by a special route was used, so the whole material can
be considered a near-surface region. This is the possible
reason why the rhombohedral phase was found instead
of the cubic phase usually observed by other authors in
crystals and large-grain powders of PMN.

The behaviour unusual for relaxor as well as for ordi-
nary ferroelectrics was recently found in PMN-PT crystals
with large x (∼0.5) [132]. The dielectric properties typical
of the ER phase are observed at T > Tm, namely the

8A tetragonal unit cell was initially reported [135], but more elaborate
investigations [136] later showed that it is indeed cubic.

deviation from the Curie-Weiss law at T < TB (where TB

� Tm) according to Equation 6 and the behaviour permit-
tivity, indicating the UR dispersion. Nevertheless, the CR
dispersion is absent, and consequently, Tm coincides with
the temperature of the FE phase transition, TC. This is
shown in Fig. 9d. Both the deviation from the Curie-Weiss
law and the UR dispersion are believed to result from
the existence of PNRs, so the high-temperature phase is
the ER state. PMN-PT with high x seems to be the first
examples of relaxor without the characteristic CR disper-
sion. To confirm this opinion, more direct identification
of PNRs (e.g. by neutron scattering) is desirable.

While an external electric field transforms a NR state
to a FE one, the hydrostatic pressure is able to induce
the reverse transformation. In the crystals exhibiting the
relaxor-to-FE phase transition, the FE phase does not ap-
pear if the sample is cooled under a high enough pressure
and the behaviour typical of the canonical relaxors is ob-
served. The pressure-induced crossover from a ferroelec-
tric to a relaxor state was discussed in detail in the recent
reviews by Samara [142, 143].

Excellent piezoelectric properties were found near the
morphotropic phase boundary in PMN-PT, PZN-PT and
some other solid solutions of complex perovskite relaxors
with PbTiO3. The transition from FE to ER phase is ob-
served in these crystals at temperatures much higher than
room temperature. Thus, they are considered and inves-
tigated as promising materials for practical applications.
This field of research, currently very active, has been re-
viewed in a number of recent papers [144–148].

7.3. Theoretical description of nonergodic
phase in relaxors

Early works on relaxors (e.g. the composition fluctuations
model by Smolenskii and Isupov [8, 97] and the super-
paraelectric model by Cross [10]) considered the PNRs to
be relatively independent noninteracting entities. It was
later understood that the specific nonergodic behaviour of
relaxors at low temperatures cannot be explained without
taking into account the interactions among PNRs and/or
quenched random local fields existing in the composition-
ally disordered structure. The interactions among PNRs
may lead to anomalous slowing-down of their dynam-
ics (nonergodicity effects) or, when becoming frustrated,
even to the formation of the glass state in which the dipole
moments of individual PNRs are randomly fixed in differ-
ent directions. Note that these interactions are of dipole-
dipole nature and can be considered as dynamic local
fields. Additionally PNRs can be influenced (or probably
even fixed) by quenched local random fields stemming
from the compositional disorder or other types of lattice
defects.

In Section 5 we have already discussed the modern the-
ories explaining the formation of PNRs. Some of these
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theories can also explain the transition from the ergodic
to nonergodic relaxor state. In particular, in the GF model,
the PNRs naturally appear in the temperature interval be-
tween the PE and the low-temperature dipole glass or
mixed ferroglass phase. In the WKG model, the forma-
tion of PNRs as well as the transition to the NR state is
ascribed to the quenched random fields exclusively.

However, the mechanisms leading to the formation of
PNRs at high temperatures are not necessarily responsi-
ble for their freezing and for the development of the low-
temperature nonergodic state. The formation and freez-
ing of PNRs are possibly two distinct phenomena requir-
ing different approaches. The “semi-microscopic” mod-
els [98, 149, 150] of glass state in relaxors describe only
the latter phenomenon, while PNRs are believed to be
already-existing objects and the mechanisms of their for-
mation are not examined.

In the spherical random-bond-random-field (SRBRF)
model proposed by Pirc and Blinc [149, 150], the Hamil-
tonian is formally written with Equations 2 and 3, but
the meanings of the parameters are different from those
discussed in Section 5. Pseudospins 
Si proportional to
the dipole moments of PNRs are introduced so that the
relation

∑

i

(
Si )
2 = 3N (9)

is satisfied (N is the number of pseudospins in the crystal).
It is assumed that each component of 
Si can fluctuate
continuously and take any value,9 i.e.

− ∞ < Siµ < +∞. (10)

Jij in Equation 3 are the random interactions (bonds) be-
tween PNRs which are assumed to be infinitely ranged.
The second term in the Hamiltonian in Equation 2 de-
scribes the interaction of pseudospins with quenched ran-
dom electric fields 
hi ,

H2 = −
∑

i


hi · 
Si .

Both random bonds Jij and random fields 
hi obey the (un-
correlated) Gaussian probability distributions with an rms
variance of J/

√
N and �, respectively. The mean value

of the distributions equals J0/N (for random bonds) and
zero (for random fields). In the absence of random fields
(� = 0), if J < J0, the theory predicts the transition from
the PE phase (in the model this phase is equivalent to
the ER phase) into an inhomogeneous FE phase with a

9Models in which the order parameter satisfies conditions (9), (10) are called
“spherical” models. Due to these conditions the model is exactly solvable
by the replica method.

nonzero spontaneous polarization; if J > J0, the system
transforms, at a well-defined temperature T = J, from the
PE to a spherical glass phase without long range order,
and the glass order parameter (which is equivalent in this
model to the well-known Edwards-Anderson order pa-
rameter, qEA) decreases linearly from 1 at T = 0 to zero at
T = J. The presence of random fields (� �= 0) destroys the
phase transition so that qEA remains nonzero at T = J, and
approaches zero when the temperature further increases.
Fig. 11a shows the temperature dependence of qEA deter-
mined experimentally from the NMR data of PMN (qEA is
shown to be proportional to the second moment, M2, of the
frequency distribution corresponding to the narrow 93Nb
NMR line) [150]. The solid line represents the fit with
the parameters J/k = 20 K and �/J2 = 0.002, confirming
the applicability of the model. The local polarization dis-
tribution function W ( 
p) (where 
p =< 
S >) predicted by
the model and determined experimentally from the NMR
lineshape also appears to be the same as shown in the inset
of Fig. 11a [150]. The W ( 
p) shape observed in dipolar
and quadrupolar glasses look very different, as shown in
Fig. 11b. These results suggest that the NR phase in PMN
cannot be described as a dipolar or quadrupolar glass. It is
a new type of glass which can be called “spherical cluster
glass” [151]. The SRBRF model is also able to explain the
dielectric non-linearity in PMN. The dynamic version of
SRBRF model describing the dispersion of liner and non-
linear dielectric susceptibility has been developed [152].
In the coupled SRBRF-phonon model [99], the coupling
of PNRs with soft TO phonons leads to the modification
of interactions among PNRs. The effect of pressure on
the relative stability of different phases in relaxors are
explained.

Vugmeister and Rabitz [98, 153] considered in their
model the hopping of PNRs in multi-well potentials. The
PNRs exist in a highly polarizable PE host lattice with
a displacive dielectric response. The theory takes into
account the broad distribution of the potential barriers
controlling PNR dynamics and the effect of interactions
between PNRs mediated by highly polarizable host. These
two aspects are described in terms of the local field dis-
tribution function. In this model, the dipole glass freezing
is believed to be accompanied by the critical FE slowing-
down. It is shown that the true glass state in which all
dipoles (PNRs) are frozen is not achieved in relaxors: the
degree of the local freezing is rather small even at low
temperatures.10 The role of the critical slowing-down is
shown to be significant in the dynamics of the system due
to the closeness of FE instability. In other words, relaxors
can be considered incipient ferroelectrics. This explains
their very large dielectric constant. In the framework of
this model, the shape of the frequency-dependent permit-

10This is in agreement with the experimental finding that in relaxors only
the longest relaxation time diverges at Tf , while the bulk of the relaxation
spectrum remains active at low temperatures (see Section 6).
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Figure 11 (a) Temperature dependence of the Edwards-Anderson glass
order parameter qEA in PMN. The solid line is the fit to the “spherical random
bond random field” (SRBRF) model. The inset shows the local polarization
distribution function W ( 
p) along the px axis according to the SRBRF model.
(b) Examples of the W(p) functions for dipolar and quadrupolar glasses are
shown for comparison (after Blinc et al. [150]).

tivity as a function of temperature in typical relaxors is
explained qualitatively. The glasslike freezing of the dy-
namics of PNRs is characterized by the non-equilibrium
spin-glass order parameter, the temperature behaviour of
which is consistent with the NMR experiments (shown in
Fig. 11). The kinetics of the electric field induced tran-
sition from the NR to FE phase was also successfully
reproduced [154] (while the glass models experience dif-
ficulties in explaining this transition).

The behaviour of PNRs can be influenced by the elec-
tronic subsystem. In particular, the thermo-localization of
charge carriers on the defects in the temperature range
of phase transition can change the relaxation dynamics.
The direction of spontaneous polarization of PNRs can be
pinned by localized charge carriers, preventing the align-
ment of PNRs in the external electric field. The related
phenomena are studied in Refs. [155, 156].

As mentioned above, the models so far discussed in
this Section consider PNRs (pseudospins) to be already-
existing entities. In order to describe the process of their
formation and development (which begins from TB � Tf),
other models are needed. Recently, it has been proposed
that quenched random fields give rise to the formation
of PNRs in the PE phase, as prescribed by the WKG
model, and then, upon further cooling, the crystal un-
dergoes a transition into the spherical cluster glass state
due to random interactions between PNRs [151]. Alter-
natively, some other models can be used to describe the
formation of SRBRF pseudospins, in particular, the soft
nanoregions model [77] [which justifies the fulfilment of
condition (10)] together with the kinetic model [70] (as
discussed in Section 5).

Let us now discuss the mechanisms of the spontaneous
relaxor-to-ferroelectric phase transition. There are two
ways to explain the formation of FE phase at TC from
the system of disordered PNRs in relaxors. The first one
suggests that the dipole-dipole interactions between PNRs
(or individual ions) lead to their FE-type arrangement (as,
e.g., in the SRBRF model discussed above). The second
mechanism arises from the kinetic model of phase tran-
sitions in compositionally disordered crystals [70] (see
Section 5) and suggests the thermally activated growth of
PNRs at TC. It is not easy to discriminate these two mech-
anisms from each other. In fact, it is also possible that both
mechanisms contribute to the process of the formation of
FE phase.

8. Conclusions
In this paper we have analyzed the peculiar behaviour of
relaxor ferroelectrics that occurs in compositionally disor-
dered perovskites. The quenched compositional disorder
in these compounds gives rise to another type of disorder,
i.e. the glassy nonergodic state that can be observed at low
temperatures, instead of a FE or AFE ordering that exists
in many simple perovskites. The research in this field has
undergone such a tremendous growth that it was not pos-
sible to review all the important works in this short paper.
Some subjects were discussed only briefly just to give the
examples characterizing the peculiarities of the behaviour.
Some other important topics have been left out, in partic-
ular, the materials technology of crystals, ceramics and
thin films and applications of relaxor ferroelectrics.

Despite the remarkable progress achieved in the re-
cent years, fundamental physics of the relaxors remains
a fascinating puzzle. Some key questions, such as what
the origin of relaxor behaviour is, still have no definite
answers. Several theoretical models have been proposed;
some of them contradict each other. Further experiments
need to be performed in order to prove or reject these
models, while new and more satisfactory theories are yet
to be worked out. With their complex structures and in-
triguing properties, relaxors represent truly a frontier of
research in ferroelectrics and related materials, offering
great opportunities both for fundamental research and for
technological applications.
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